Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 297(4): 101141, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34478713

RESUMO

The CD8αß heterodimer plays a crucial role in the stabilization between major histocompatibility complex class I molecules (MHC-I) and the T cell receptor (TCR). The interaction between CD8 and MHC-I can be regulated by posttranslational modifications, which are proposed to play an important role in the development of CD8 T cells. One modification that has been proposed to control CD8 coreceptor function is ribosylation. Utilizing NAD+, the ecto-enzyme adenosine diphosphate (ADP) ribosyl transferase 2.2 (ART2.2) catalyzes the addition of ADP-ribosyl groups onto arginine residues of CD8α or ß chains and alters the interaction between the MHC and TCR complexes. To date, only interactions between modified CD8 and classical MHC-I (MHC-Ia), have been investigated and the interaction with non-classical MHC (MHC-Ib) has not been explored. Here, we show that ADP-ribosylation of CD8 facilitates the binding of the liver-restricted nonclassical MHC, H2-Q10, independent of the associated TCR or presented peptide, and propose that this highly regulated binding imposes an additional inhibitory leash on the activation of CD8-expressing cells in the presence of NAD+. These findings highlight additional important roles for nonclassical MHC-I in the regulation of immune responses.


Assuntos
ADP-Ribosilação/imunologia , Antígenos CD8/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígenos H-2/imunologia , Multimerização Proteica/imunologia , ADP Ribose Transferases/genética , ADP Ribose Transferases/imunologia , ADP-Ribosilação/genética , Animais , Antígenos CD8/genética , Antígenos H-2/genética , Fígado/imunologia , Camundongos , Camundongos Knockout , Multimerização Proteica/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia
2.
Front Immunol ; 12: 703719, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504490

RESUMO

Mouse T cells express the ecto-ADP-ribosyltransferase ARTC2.2, which can transfer the ADP-ribose group of extracellular nicotinamide adenine dinucleotide (NAD+) to arginine residues of various cell surface proteins thereby influencing their function. Several targets of ARTC2.2, such as P2X7, CD8a and CD25 have been identified, however a comprehensive mouse T cell surface ADP-ribosylome analysis is currently missing. Using the Af1521 macrodomain-based enrichment of ADP-ribosylated peptides and mass spectrometry, we identified 93 ADP-ribsoylated peptides corresponding to 67 distinct T cell proteins, including known targets such as CD8a and CD25 but also previously unknown targets such as CD73. We evaluated the impact of ADP-ribosylation on the capability of CD73 to generate adenosine from adenosine monophosphate. Our results show that extracellular NAD+ reduces the enzymatic activity of CD73 HEK cells co-transfected with CD73/ARTC2.2. Importantly, NAD+ significantly reduced CD73 activity on WT CD8 T cells compared to ARTC2ko CD8 T cells or WT CD8 T cells treated with an ARTC2.2-blocking nanobody. Our study provides a comprehensive list of T cell membrane proteins that serve as targets for ADP-ribosylation by ARTC2.2 and whose function may be therefore affected by ADP-ribosylation.


Assuntos
5'-Nucleotidase/imunologia , ADP Ribose Transferases/imunologia , ADP-Ribosilação/imunologia , Linfócitos T CD8-Positivos/imunologia , 5'-Nucleotidase/genética , ADP Ribose Transferases/genética , ADP-Ribosilação/genética , Animais , Camundongos , Camundongos Knockout
3.
Front Immunol ; 12: 642545, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763084

RESUMO

Murine T cells express the GPI-anchored ADP-ribosyltransferase 2.2 (ARTC2.2) on the cell surface. In response to T cell activation or extracellular NAD+ or ATP-mediated gating of the P2X7 ion channel ARTC2.2 is shed from the cell surface as a soluble enzyme. Shedding alters the target specificity of ARTC2.2 from cell surface proteins to secreted proteins. Here we demonstrate that shed ARTC2.2 potently ADP-ribosylates IFN-γ in addition to other cytokines. Using mass spectrometry, we identify arginine 128 as the target site of ADP-ribosylation. This residue has been implicated to play a key role in binding of IFN-γ to the interferon receptor 1 (IFNR1). Indeed, binding of IFN-γ to IFNR1 blocks ADP-ribosylation of IFN-γ. Moreover, ADP-ribosylation of IFN-γ inhibits the capacity of IFN-γ to induce STAT1 phosphorylation in macrophages and upregulation of the proteasomal subunit ß5i and the proteasomal activator PA28-α in podocytes. Our results show that ADP-ribosylation inhibits the signaling functions of IFN-γ and point to a new regulatory mechanism for controlling signaling by IFN-γ.


Assuntos
ADP Ribose Transferases/imunologia , ADP Ribose Transferases/metabolismo , ADP-Ribosilação/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia
4.
Immunology ; 164(1): 15-30, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33783820

RESUMO

ADP-ribosylation is the addition of one or more (up to some hundreds) ADP-ribose moieties to acceptor proteins. This evolutionary ancient post-translational modification (PTM) is involved in fundamental processes including DNA repair, inflammation, cell death, differentiation and proliferation, among others. ADP-ribosylation is catalysed by two major families of enzymes: the cholera toxin-like ADP-ribosyltransferases (ARTCs) and the diphtheria toxin-like ADP-ribosyltransferases (ARTDs, also known as PARPs). ARTCs sense and use extracellular NAD, which may represent a danger signal, whereas ARTDs are present in the cell nucleus and/or cytoplasm. ARTCs mono-ADP-ribosylate their substrates, whereas ARTDs, according to the specific family member, are able to mono- or poly-ADP-ribosylate target proteins or are devoid of enzymatic activity. Both mono- and poly-ADP-ribosylation are dynamic processes, as specific hydrolases are able to remove single or polymeric ADP moieties. This dynamic equilibrium between addition and degradation provides plasticity for fast adaptation, a feature being particularly relevant to immune cell functions. ADP-ribosylation regulates differentiation and functions of myeloid, T and B cells. It also regulates the expression of cytokines and chemokines, production of antibodies, isotype switch and the expression of several immune mediators. Alterations in these processes involve ADP-ribosylation in virtually any acute and chronic inflammatory/immune-mediated disease. Besides, pathogens developed mechanisms to contrast the action of ADP-ribosylating enzymes by using their own hydrolases and/or to exploit this PTM to sustain their virulence. In the present review, we summarize and discuss recent findings on the role of ADP-ribosylation in immunobiology, immune evasion/subversion by pathogens and immune-mediated diseases.


Assuntos
ADP-Ribosilação/imunologia , Alarminas/metabolismo , Viroses/imunologia , Animais , Humanos , Evasão da Resposta Imune , Imunidade Celular , Imunização , Inflamação , Virulência
5.
Curr Drug Discov Technol ; 18(4): 473-484, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32767945

RESUMO

Schistosome infection is regarded as one of the most important and neglected tropical diseases associated with poor sanitation. Like other living organisms, schistosomes employ multiple biological processes, of which some are regulated by a post-translational modification called Adenosine Diphosphate-ribosylation (ADP-ribosylation), catalyzed by ADP-ribosyltransferases. ADP-ribosylation is the addition of ADP-ribose moieties from Nicotinamide Adenine Dinucleotide (NAD+) to various targets, which include proteins and nucleotides. It is crucial in biological processes such as DNA repair, apoptosis, carbohydrate metabolism and catabolism. In the absence of a vaccine against schistosomiasis, this becomes a promising pathway in the identification of drug targets against various forms of this infection. The tegument of the worm is an encouraging immunogenic target for anti-schistosomal vaccine development. Vaccinology, molecular modeling and target-based drug discovery strategies have been used for years in drug discovery and for vaccine development. In this paper, we outline ADP-ribosylation and other different approaches to drug discovery and vaccine development against schistosomiasis.


Assuntos
ADP-Ribosilação/imunologia , Anti-Helmínticos/farmacologia , Doenças Negligenciadas/terapia , Schistosoma/imunologia , Esquistossomose/terapia , ADP-Ribosilação/efeitos dos fármacos , Animais , Anti-Helmínticos/uso terapêutico , Antígenos de Helmintos/imunologia , Descoberta de Drogas/métodos , Humanos , Doenças Negligenciadas/imunologia , Doenças Negligenciadas/parasitologia , Schistosoma/efeitos dos fármacos , Esquistossomose/imunologia , Esquistossomose/parasitologia , Desenvolvimento de Vacinas/métodos
6.
Viruses ; 12(4)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244383

RESUMO

Macrodomains, enzymes that remove ADP-ribose from proteins, are encoded by several families of RNA viruses and have recently been shown to counter innate immune responses to virus infection. ADP-ribose is covalently attached to target proteins by poly-ADP-ribose polymerases (PARPs), using nicotinamide adenine dinucleotide (NAD+) as a substrate. This modification can have a wide variety of effects on proteins including alteration of enzyme activity, protein-protein interactions, and protein stability. Several PARPs are induced by interferon (IFN) and are known to have antiviral properties, implicating ADP-ribosylation in the host defense response and suggesting that viral macrodomains may counter this response. Recent studies have demonstrated that viral macrodomains do counter the innate immune response by interfering with PARP-mediated antiviral defenses, stress granule formation, and pro-inflammatory cytokine production. Here, we will describe the known functions of the viral macrodomains and review recent literature demonstrating their roles in countering PARP-mediated antiviral responses.


Assuntos
ADP-Ribosilação/imunologia , Vírus de RNA/imunologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/imunologia , Adenosina Difosfato Ribose/metabolismo , Grânulos Citoplasmáticos/imunologia , Grânulos Citoplasmáticos/virologia , Humanos , Interferons/imunologia , Mutação , Poli(ADP-Ribose) Polimerases/imunologia , Domínios Proteicos , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/metabolismo , Infecções por Vírus de RNA/virologia , Vírus de RNA/classificação , Vírus de RNA/genética , Vírus de RNA/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
7.
Trends Immunol ; 40(2): 159-173, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30658897

RESUMO

Innate immune cells express pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and endogenous danger-associated molecular patterns (DAMPs). Upon binding, PAMPs/DAMPs can initiate an immune response by activating lymphocytes, amplifying and modulating signaling cascades, and inducing appropriate effector responses. Protein ADP-ribosylation can regulate cell death, the release of DAMPs, as well as inflammatory cytokine expression. Inhibitors of ADP-ribosylation (i.e. PARP inhibitors) have been developed as therapeutic agents (in cancer), and are also able to dampen inflammation. We summarize here our most recent understanding of how ADP-ribosylation can regulate the different phases of an immune response. Moreover, we examine the potential clinical translation of pharmacological ADP-ribosylation inhibitors as putative treatment strategies for various inflammation-associated diseases (e.g. sepsis, chronic inflammatory diseases, and reperfusion injury).


Assuntos
ADP-Ribosilação/imunologia , Imunidade Inata/imunologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , ADP-Ribosilação/efeitos dos fármacos , Animais , Humanos , Receptores de Reconhecimento de Padrão/imunologia , Transdução de Sinais/imunologia
8.
Crit Rev Immunol ; 37(2-6): 499-530, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29773032

RESUMO

The bacterial enterotoxins, cholera toxin and the heat labile toxin of E. coli, are well known adjuvants for mucosal immune response. Their common A chain mediates the toxigenic mechanism by causing ADP ribosylation of G proteins and subsequent elevation of cAMP in target cells. A large IgA and IgG antibody response to admixed protein antigen (Ag) is the hallmark of these adjuvants and is clearly associated with the A chain activity. Expansion of Ag-specific B and T cells, alteration of T cell cytokine production, and changes in regulatory T cells have been reported as adjuvant mechanisms. The B chain derivatives of these toxins can also weakly enhance immune response, especially if covalently associated with Ag and used for nasophyrangeal immunization. Importantly, these toxins or their B chain derivatives can alter the normal immune regulation that produces oral tolerance. This indicates that they modulate mechanisms operative between the mucosal and systemic immune systems. There are some discrepancies between in vitro models of CT or LT activity and in vivo manifestations of their adjuvant activities. Interpretation of current data regarding in vivo mechanism is hampered by an incomplete understanding of how mucosal B and T cells can interact with systemic lymphoid tissue and vice versa. More important, there is no clear understanding of the early effects of the toxins on the local (and draining) mucosal lymphoid tissues. This is especially true in the critical areas of antigen presentation, T and B cell activation, and cytokine production.


Assuntos
ADP-Ribosilação/imunologia , Adjuvantes Imunológicos/farmacologia , Enterotoxinas/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Imunidade nas Mucosas/efeitos dos fármacos , Adjuvantes Imunológicos/metabolismo , Animais , Apresentação de Antígeno/efeitos dos fármacos , Apresentação de Antígeno/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/metabolismo , AMP Cíclico/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Enterotoxinas/imunologia , Enterotoxinas/metabolismo , Humanos , Imunoglobulina A/imunologia , Imunoglobulina A/metabolismo , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Tecido Linfoide/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...